
The ATA over Ethernet Protocol

Brantley Coile

Sam Hopkins

Coraid, Inc.

565 Research Drive

Athens, GA 30605

{brantley|sah}@coraid.com

1. Introduction

AoE is an openstandardsbasedprotocol that allows direct networkaccessto disk drivesby client
hostssuchas web servers,mail servers,or clusterservers. Thesesystemscan usethe AoE protocol to
accessanarbitrarily largearrayof AoE serversthroughtheuseof commodityEthernetswitches.TheAoE
serverscouldbesmallprocessorsanddisk driveson a smallprintedcircuit boardpluggedinto a small rack
mounted chassis.These small boards are called ‘blades.’

Theprotocolis describedin the AoE specification.This documentis meantto providean introduc-
tion to theprotocol,andaid in understandingtheprotocolfeatures.In this document,hostmeanstheclient
host that is using the disk drives,andthe serveris the networknodethat is providing block accessto the
disk.

Theprotocolconsistsof requestmessagessentto theAoE serverandreply messagesreturnedto the
host. SomemessagescontainATA commands,andany dataassociatedwith the transaction.Othermes-
sagesrelateto the Config/Queryfeatureof the protocol, to setandquerya small amountof out-of-band
data. Theformatof thesemessagearesimpleandhavetwo forms:ATA messages,andConfig/Querymes-
sages.Both share a common header format that facilitates network delivery.

The structureof this paperreflectsthat structureof the protocol. The next sectiontalks aboutthe
commonheader,andthe following sectiondiscussestheATA messages,with thesectionafterthantalking
aboutthe Config/Querymessages.The next to last sectiontalks aboutoneway the AoE protocolcanbe
used. It describessomeaspectsof our Linux devicedrivers. We concludewith someobservationsabout
the protocol.

2. The Common Header

While the two classesof messages,ATA andConfig/Query,eachhavetheir own fields, they both
sharea commonformatfor thefirst 24 bytesof a message.This commonheaderprovidesenoughinforma-
tion to send messages between client hosts and AoE servers.Thecommonheaderhasfour functions. First,
it providesa way to correlateresponseswith requests.Second,it providesa way to discoverthe Ethernet
addressof an AoE serverat somephysicallocation in a rack storageblades. Third, the commonheader
identifies requests from the responses.Lastly, the header contains error information.

Theheaderis shownin Figure1. As canbeseenthe14 byteEthernetheaderis describedfor conve-
nience. It is theE of AoE.

AoE messagescanbequeuedin AoE servers.This allowsdisksto remainbusy,becauseassoonas
they finish onedisk requestthey canstarton the next. AoE usesEthernet’sbesteffort delivery, and the
client hostsoftwareis responsiblefor resendingrequestmessagesthathavenot beenrespondedto in a rea-
sonableamountof time. To matchresponseswith requestsand to checkfor responsesthat were never
received,the client host can use the Tag field. AoE serverscopy the Tag field from requeststo the



- 2 -

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 Ethernet Destination Addr

4 Ethernet Destination Addr Ethernet Source Addr

8 Ethernet Source Addr

12 Ethernet Type (0x88a2) Ver R E 0 0 Error

16 Shelf Slot Class

20 Tag

Figure 1. The Common AoE Header
responses unchanged, so the requester can put correlation information in the tag field. When the response
is received, an internal table of tags can be scanned to find the associated request. Timeout routines can
scan this same table looking for requests that have not been responded to. In this way, AoE provides all the
information needed for reliable operation.

The next feature provides a way to find specific AoE servers. AoE server blades are little larger than
3.5" disk drives. They are inserted into slots in a small shelf. A number of these shelves can be bolted into
simple relay racks, and many shelves connected to a local network segment. The common header has fields
to help keep track of blade locations. Each shelf has dip switches giving it a unique identity. Each blade
can read these dip switches as well as its slot number. These two numbers are represented in the common
header as the shelf and slot address. (In the AoE specification they are referred to as major and minor num-
bers, not to be confused with values of the same name in Unix and Linux special devices.) These fields can
be used to find the Ethernet address of a specific blade.

This is done with Ethernet broadcast messages. Ethernet has a reserved address, consisting of all
ones, for broadcasting messages to all devices on the local network segment. AoE protocol requires that
only request messages that have its unique shelf and slot number be processed, dropping all others. If we
wish to find the Ethernet address of the blade in, say, shelf 6 slot 4, we would broadcast a message with the
shelf and slot fields set to 6 and 4 respectively. Only that blade would respond. The response would have
the Ethernet address of that blade.

The shelf and slot numbers also have their own broadcast values. Addresses of all ones will cause
the AoE server to accept the request. This allow some message to be processed by more than one AoE
server. If a shelf is all ones and the slot number a specific value, only the blades in that slot in every shelf
would process the message. A slot value of all ones with a specific shelf address will cause only the blades
in that shelf to respond. This could also be used to query for all the blades currently on the network seg-
ment.

Two flags are also used in the header. In order to keep from accidentally processing a response AoE
servers will only process messages that contain a zero in the R bit. Client servers set this bit to zero in
requests, and AoE servers set this bit to one in responses. This was added to keep blades from executing
responses that may have been broadcast on the local network segment.

The other flag bit is used to indicate an error. The E bit in the header is set to one in a response when
the request cannot be completed for some reason. The Error field will in that case contain an error mes-
sage. See the AoE protocol specification for the current list of error codes.

Lastly, the Class, or Cmd as it’s called in the AoE specification, contains a zero for ATA messages
and a one for Config/Query messages.



- 3 -

3. ATA Class Messages

The ATA class messages are described in this section. The Advanced Technology Attachment is a
standard that has evolved out of the ST506 interface and the Western Digital 1010 disk controller chip of
the early 1980’s. These chips were embedded in host bus adaptors (HBA) used in IBM Personal Computer
compatible systems.

The chip had a number of registers that controlled disk data transfers. The set of registers held the
cylinder, track and sector information, a sector count register that specified the number of sectors to be read
or written, and a command register. When the command register was written with an operation code, the
disk would initiate a data transfer. A status register and an error register would report any problems or the
successful completion of the command.

As an example, in the case of a read command, data would be transferred from the disk into a buffer
on the HBA, and the HBA would notify the host that data was available to be read. The host would then
move the data into its local memory.

With the advent of In Disk Electronics (IDE), the controller function was moved from the HBA to
the drive itself. The specification for the speed of transferring the data between the internal buffer and the
host’s memory was increased several times. This was all finally codified into the Advanced Technology
Attachment or ATA standard. The ATA standard covers both the physical connections to the drive and the
logical interface.

The original parameter registers using the three dimensional coordinates in the form of cylinder, track
and sector, were replaced with a 24-bit logical block address (LBA). Since disks are addressed as 512 byte
sectors, 24 bit LBAs limited disks to 137GB. When disk drives exceeded this limit 48-bit addressing was
adopted. This was accomplished by adding new 48-bit commands, and allowing the old parameter registers
to be double loaded. That is, one could store two values into the same register and both values would be
used as part of the address. AoE also allows the use of 48-bit LBA commands, allowing disks of
144,115GB, which should be enough for a while.

The ATA messages contain requests and response to perform ATA transactions. In ATA transac-
tions, there are three possibilities: no data will be transferred, data will be written into the disk, or data will
be read from the disk. Nothing in the parameter registers indicates which one of these operations will
occur. When the W flag in the ATA message is set to one it indicates that there will be a transfer to the disk
drive.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

24 0 E 0 D 0 0 AW Err/Feature Sector Count Cmd/Status

28 lba0 lba1 lba2 lba3

32 lba4 lba5 000000000000000

36 Data

Figure 2. The ATA Header

The ATA message contains values to put into the registers, and the flags field to controls how the
values are used. See Figure 2. If the E bit in Aflags is zero, 24-bit addressing is used. The lba values are
copied into the address registers, the feature and sector count value are copied into the appropriate registers.
Last, the command is copied into the command register which starts the disk transaction. The AoE server
watches the status register, and after the completion of the command, copies all of the register into the
response header. The error register goes into the Err/Feature field and the status register is copied into the
Cmd/Status field. The response from an ATA message will contain the values of the status and error regis-
ters, along with any residue of the parameter registers.

If the E bit in the ATA message is set, the 48 bit double loading of the parameter registers are used.

Since the ATA commands are carried over Ethernet, and since there is a constraint on the size of the



- 4 -

frames on an Ethernet network, we can’t send more than two 512 byte sectors in a single message. This
means that the sector count will be less than or equal to two. Even with the 1GE and 10GE jumbo frames,
we can’t move more than 8192 bytes, or 16 sectors. So, in 48-bit mode we don’t bother with the upper byte
of the sector count register. This may seem overly restrictive, but one of the authors has written an NFS
client and is sensitive to the number of zero bits encoded in a protocol.

The A bit, when set to one, indicates to the AoE server that it can respond as soon as a write com-
mand is received. Queuing the writes to the disk can improve performance by allow more data transfers to
be done in parallel, and allow for the possibility of the AoE server transferring data from multiple write
requests in a single disk transaction.

This is all there is to the ATA messages. It simply exports that ATA interface on AoE servers to the
client hosts.

4. Config/Query Information

The naming scheme using shelf and slot numbers described above is more than adequate for a few
client hosts hooked to dozens of AoE servers. But as the number of client hosts and AoE servers increases
this scheme becomes less attractive. The second class of AoE messages, the Config/Query messages,
enables a more advanced naming scheme.

On each AoE server there is a small amount of nonvolatile memory that can be used by the client
servers to save configuration data. This configuration data can be any arbitrary binary values, and have a
length from up to 1024 bytes. This information has no meaning to the AoE server; it is merely a place for
client hosts to stash information. This data is not stored on the disk to avoid any interaction with any server
software. Disks from client hosts, for example, can be moved to an AoE server and still be accessed, with-
out having to reform the information. The Config/Query messages use this data in two ways. First, the
config data can be conditionally or unconditionally set. Second, there are various ways to query for the
data.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

24 Buffer Count Firmware Version

28 00000000 AoE CCmd Config String Length

32 Config String ...

Figure 3. The Config/Query Header

Setting the config data can be done in two ways. First, a set request will set the config memory to a
value only if the current config data is zero length. If the config memory already has non-zero length data,
the set request will fail. A second command can force the AoE server to set the config memory. The
intended config values can be zero length thereby allowing the config data to be reset.

Query messages can contain query data that is used to optionally match against the stored config
information. The data can be queried in three different ways. First, the config data can be unconditionally
read. Second, the config data can be returned only if the query data matches the prefix of the config on the
AoE server. That is, the query has a number of bytes that is less than or equal to the length of data in the
server, and the bytes must match the bytes in the server. The AoE server responds with the complete config
information.

The last query request requires an exact match of the stored information. The data in the request and
the data in the server have to match both in content and length. This is useful for broadcast queries where
one is looking for a specific AoE server.

So, a possible scenario is as follows. A pool of AoE servers are introduced into the system, all hav-
ing zero length config data. A client host wants to provision more storage, so it broadcasts for an exact
match with a query of zero length. All of the new blades will respond since they have no config data. The
client host then randomly chooses a server and sends some config information to be conditionally set.



- 5 -

Normally the data is stored and the client host gets a positive response. However, if two client hosts simul-
taneous query for zero length config data and see the same responses, both might pick the same server to
claim. They would both send the conditional set config command, but because of the serial nature of the
Ethernet, only one request would be first to the AoE server and succeed in setting the config data. The sec-
ond set request would fail since the length of the data would no longer be zero. In this way, the blades
themselves do simple yet sufficient arbitration.

Next, consider RAID software that has claimed a set of servers to form a RAID device. The RAID
software could set each AoE servers config string to a two part string. The first part could identify the
RAID set, and the last part could identify the AoE servers position in that set. When client hosts later
reboot they could send a prefix query with just the unique RAID name and would receive responses from
all the blades in the set. These responses would have all the config data so each response would identify
their location in the set.

These are just two ways the config/query features of AoE can be used. It is hoped that others will
find more uses for them. These features were designed to be flexible without being so general they would
be hard to use.

__________________________________
Table 1 Config Commands

Value Description__________________________________
0 read config string
1 test config string exact match
2 test config string prefix match
3 set config string
4 force set config string__________________________________




















5. Device drivers

The intention of the AoE protocol is to provide local access to disks on a local area network. To this
end, block device drivers are used to access the protocol. This is different that other networking protocols
in that to the host, the network service appears as simply a local disk. There are no Sockets. There are no
socket system calls. Just block special files in the /dev directory.

In the Linux 2.6 AoE drivers, the special files appear in the directory /dev/etherd. The names of
these files link them to specific physical locations of AoE blades. The name, for example, for the blade in
shelf 3, slot 6 would be /dev/etherd/e3.6, and the second partition on that blade would be
/dev/etherd/e3.6p2. This allows a very simple way to manage the blades in a network.

In addition there are a couple of character special files in the directory. The current status of AoE
blades can be listed by reading the file /dev/etherd/status. /dev/etherd/error will copy out
any logged driver error messages.

6. Conclusion

The AoE protocol is a flexible yet simple protocol that allows ATA disks to be directly connected to
a local area network. It is simple to implement, so the costs of the AoE servers can be very low. Because
of that, there can be a lot of AoE servers on a single local network segment. The use of commodity net-
work to bind disk drives with client hosts allows for true network storage instead of the expensive Fibre
Channel and systems both closed and with high common equipment costs.

The use of local Linux and BSD drivers has worked out well, and the performance has been encour-
aging. Keeping the contents of the disk transparent to the AoE server allows users to know exactly what is
on the disk and move them from direct attached to the client hosts to AoE servers without having to copy or
reformat data. They can always get their data off the blades.

The decision to use simple Ethernet frames requires some explanation. We view the use of storage
blades as local storage, not Internet storage. As a result we use the simple data link services of a local area
network to transport the messages. We are not trying to make storage available directly across an internet-
work as there are already solutions for that problem. For internetwork storage the use of iSCSI or NFS



- 6 -

would be more appropriate.


